Competition of elastic and adhesive properties of carbon nanotubes anchored to atomic force microscopy tips.

نویسندگان

  • Charlotte Bernard
  • Sophie Marsaudon
  • Rodolphe Boisgard
  • Jean-Pierre Aimé
چکیده

In this paper we address the mechanical properties of carbon nanotubes anchored to atomic force microscopy (AFM) tips in a detailed analysis of experimental results and exhaustive description of a simple model. We show that volume elastic and surface adhesive forces both contribute to the dynamical AFM experimental signals. Their respective weights depend on the nanotube properties and on an experimental parameter: the oscillation amplitude. To quantify the elastic and adhesive contributions, a simple analytical model is used. It enables analytical expressions of the resonance frequency shift and dissipation that can be measured in the atomic force microscopy dynamical frequency modulation mode. It includes the nanotube adhesive contribution to the frequency shift. Experimental data for single-wall and multi-wall carbon nanotubes compare well to the model predictions for different oscillation amplitudes. Three parameters can be extracted: the distance necessary to unstick the nanotube from the surface and two spring constants corresponding to tube compression and to the elastic force required to overcome the adhesion force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes

Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

“a Review on Carbon Nanotube Probes for Microscopy Applications”

Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacit...

متن کامل

High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies

The structural and mechanical properties of single-walled carbon nanotubes (SWNTs) make them ideal tips for scanning probe microscopies such as atomic force microscopy (AFM). However, the ideal nanotube probe, which corresponds to an individual SWNT, has been difficult to produce in high yield. To overcome this difficulty, a straightforward and easily implemented method that enables very high-y...

متن کامل

Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy

Coiled carbon nanotubes were produced catalytically by thermal decomposition of hydrocarbon gas. After deposition on a silicon substrate, the three-dimensional structure of the helix-shaped multiwalled nanotubes can be visualized with atomic force microscopy. Helical structures of both chiralities are present in the nanotube deposits. For larger coil diameters ( >170 nm), force modulation micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2008